
White Paper

Using software based fast block averaging
Updated Version April 2019 – New Chapter and Results using CUDA-based GPU

Background
The block, or segmented memory, averaging mode is
used with Digitizers for different applications where
incoherent noise needs to be removed from a signal.
Independent of the manufacturer of the digitizer all
FPGA based hardware implementations of the block
averaging mode limit the maximum size of the
segment to be averaged. The limit depends on the
capacity of the FPGA and usually ranges from 32k up to
500k samples.

This white paper shows how to use the fast PCIe
streaming capabilities of the Spectrum M4i series
digitizers to implement block averaging in software to
go beyond these limits. Using the M4i.2230-x8 (1
channel, 5 GS/s, 8 bit digitizer with 1.5 GHz bandwidth)
results achieved with both the hardware and software
block averaging methods are compared.

What is Block Averaging?
The Block Averaging mode can be used to improve the fidelity of any repetitive signal by
removing its random noise components. The mode allows multiple single acquisitions to be
made, accumulated and averaged. The process reduces random noise and improves the
visibility of the repetitive signal. The averaged signal has an enhanced measurement
resolution and increased signal-to-noise (SNR) ratio.

The Block Averaging mode can be used to improve
measurements in a variety of different applications like
Radar Test, Mass Spectroscopy, Medical Imaging,
Ultrasonic Test, Optical Fiber Test and Laser Ranging.

The right side screenshot shows a low level signal
(approximately 2 mV) that is completely overlaid by
random noise and the improvement that can be
achieved when using different averaging factors. While
the source signal is not even visible in the original
single-shot acquisition, averaging 10 times shows that
there is actually a signal with 5 peaks. Doing a block
average of 1000 times improves the signal quality even
further revealing the real shape of the signal complete
with secondary maximum and minimum peaks.

This example was made using a digitizer with a
sampling rate of 500 MS/s (2 ns per point) and 14 bit
resolution.

© Spectrum GmbH, Germany 1/6

M4i.2230-x8 - 5 GS/s 8 bit Digitizer with 1.5 GHz BW

Noise Improvement with Block Average

White Paper

System Setup
The test system was a standard office PC from the Spectrum development department
consisting of the following components:

• Motherboard: Gigabyte GA-H77-D3H

• CPU: Intel i7-3770 4 x 3.4 GHz

• Memory: 8 GByte DDR3 memory

• SSD: 120 GByte Samsung 840 EVO

• Operating System: Windows 7 Professional 64 Bit

• Compiler: Visual Studio 2005 Standard Edition

The motherboard has one free PCIe x8 Gen2 slot which is used by the digitizer card. This slot
has a payload of 256 which allows the Spectrum M4i cards to reach a full streaming speed of
around 3.4 GByte/s (without any data processing).

Software Implementation
The test software was done in plain C++ and is
based on the Spectrum streaming examples.
The test card was fed with an external trigger
and acquired one segment of data on every
trigger event. Data was stored in the cards on-
board memory and transferred by scatter-
gather DMA directly into PC memory where it
was accumulated to perform the block
averaging. Different setups and improvement
methods have been tested to see what
performance levels could be achieved.

The small source code excerpt shows the
threaded version of the main summation loop.
This is the crucial and speed determining part
of the software.

The following list gives information and
comments on the different aspects of the
implementation found in the results section:

• Segmentsize: the number of samples for one data segment that will be acquired after
receiving a trigger event.

• Averages: the number of averages (summations) that are performed until a segment
is stored and the average process is restarted.

• Notifysize: the amount of data after which an interrupt is generated by the PC
hardware. This notifysize defines the pace of the complete average loop. If the
notifysize is larger than the segmentsize multiple segments are summarized on one
interrupt. This reduces the overhead for thread communication and interrupt
handling.

© Spectrum GmbH, Germany 2/6

SPCM_THREAD_RETURN SPCM_THREAD_CALLTYPE pvAverageSegmentPart (void*
pvArguments)
 {
 SPCM_AVERAGE_DATA* pstData = (SPCM_AVERAGE_DATA*) pvArguments;
 int32 i, j;
 int32 lStart;
 int32 lEnd;
 int32 lNumSegments = pstData->lNumSegments;
 int32* plAverageData = pstData->plAverageData;
 int8* pbyData = pstData->pbyData;

 while (pstData->bRunNotQuit)
 {
 spcm_vWaitEvent (&pstData->hStart);

 for (j=0; j<lNumSegments; j++)
 {
 lStart = j * pstData->lSegmentsize + pstData->lStartOffset;
 lEnd = pstData->lStartOffset + pstData->lAveragesize;

 for (i=lStart; i < lEnd; i++)
 plAverageData[i] += (int32) pbyData[i];
 }

 spcm_vSignalEvent (&pstData->hEnd);
 }

 return 0;
 }

White Paper

• Buffersize: the overall target buffer in memory for the DMA transfer. In our example
the buffer is a fixed size of 16 times the notifysize.

• Triggerrate: the repetition rate of the external signal generator. In the results we
show the maximum achieved triggerrate without filling up (overflowing) the buffers.

• Threads: to speed up the summation process we parallelized this task by splitting the
summation into a number of different software threads as shown on the previous
page. If Threads is shown as zero the summation process does not use threading but
runs directly inline in a loop.

• CPU Load: as the average process is done in software the CPU(s) need to do all the
work. Luckily modern CPU's consist of multiple cores allowing an easy way to share
working tasks between them.

• SSE/SSE2 commands: on a first look these commands seem to be perfectly suited to
parallelize the summation process and speed up the software without the need of
any thread based programming. However, unfortunately the SSE command set is all
based on data of the same type. As the acquired data is 8 bit wide and the average
buffer is 32 bit wide this is not a solution that can be used here.

Results
All measurements are made with a digitizer using 1 channel sampling at 5 GS/s, with 8 bit
resolution and an external trigger. The table also lists different program settings to show the
result differences. The best result for each segmentsize is marked yellow in the table.

Samplerate Segmentsize Averages Notifysize Mode Threads Max Triggerrate CPU Load

5 GS/s 32 kSamples 1000 1 MByte Hardware - 150 kHz < 5%

5 GS/s 128 kSamples 1000 1 MByte Hardware - 38 kHz < 5%

5 GS/s 256 kSamples 1000 256 kByte Software 2 10.3 kHz 25%

5 GS/s 256 kSamples 1000 1 MByte Software 2 12.6 kHz 17%

5 GS/s 256 kSamples 1000 1 MByte Software 4 12.8 kHz 16%

5 GS/s 256 kSamples 1000 1 MByte Software - 6.4 kHz 14%

5 GS/s 512 kSamples 1000 512 kByte Software 2 5.9 kHz 25%

5 GS/s 512 kSamples 1000 512 kByte Software 4 6.0 kHz 29%

5 GS/s 512 kSamples 1000 1 MByte Software 4 6.4 kHz 23%

5 GS/s 512 kSamples 1000 2 MByte Software 4 6.4 kHz 23%

5 GS/s 512 kSamples 1000 8 MByte Software 4 6.4 kHz 14%

5 GS/s 512 kSamples 1000 8 MByte Software - 3.4 kHz 14%

5 GS/s 1 MSamples 1000 1 MByte Software - 1.5 kHz 16%

5 GS/s 1 MSamples 1000 1 MByte Software 2 2.9 kHz 24%

5 GS/s 1 MSamples 1000 1 MByte Software 4 2.9 kHz 23%

5 GS/s 1 MSamples 100 1 MByte Software 4 2.9 kHz 30%

5 GS/s 1 MSamples 10000 1 MByte Software 4 2.9 kHz 23%

5 GS/s 2 MSamples 1000 2 MByte Software - 0.7 kHz 14%

5 GS/s 2 MSamples 1000 2 MByte Software 4 1.3 kHz 40%

© Spectrum GmbH, Germany 3/6

White Paper

Samplerate Segmentsize Averages Notifysize Mode Threads Max Triggerrate CPU Load

5 GS/s 4 MSamples 1000 4 MByte Software - 340 Hz 15%

5 GS/s 4 MSamples 1000 4 MByte Software 2 410 Hz 24%

5 GS/s 4 MSamples 1000 4 MByte Software 4 390 Hz 50%

5 GS/s 8 MSamples 1000 8 MByte Software - 160 Hz 14%

5 GS/s 8 MSamples 1000 8 MByte Software 2 190 Hz 35%

New - Using a CUDA-based GPU for averaging
In November 2018 Spectrum released some examples for block averaging using the SCAPP
(Spectrum 's CUDA Access for Parallel Processing) option for very fast data processing. The
basic concept is the same as above where the acquisition is done by the Digitizer and the
data is transferred continuously over the PCIe bus. However, instead of calculating the
average inside the PC a GPU is used. A big advantage of the GPU-solution is that it is
designed for parallel calculations. This makes it a perfect fit for any kind of block average
process.

SCAPP gives users the ability to port data directly to the GPU, using RDMA (Remote Direct
Memory Access) transfers, where high-speed time and frequency domain signal averaging
can be performed without the length or calculation power limitations typically found in
other averaging products.

For example, an M4i.2220-x8 Spectrum digitizer can sample signals at 2.5 GS/s and average
them continuously without missing an event, even when the signals being averaged are
several seconds in length. Similarly, an M4i.4451-x8 digitizer with 14-bit resolution can
perform the same function while sampling four signals simultaneously at 450 MS/s! The
digitizer cards also include flexible trigger, acquisition and readout modes, which allows
them to average signals even when the trigger rates are extremely high. In contrast to the
FPGA-based solution, which needs the highest performance FPGAs, the GPU-based averaging
already runs at full-speed, even with entry-level GPU cards!

The following table shows some of the test results with the GPU using a similar setup as
before:

Samplerate Segmentsize Averages Notifysize Mode Threads Max Triggerrate CPU Load

5 GS/s 32 kSamples 1000 1 MByte GPU - 103 kHz <5%

5 GS/s 256 kSamples 1000 1 MByte GPU - 12.9 kHz <5%

5 GS/s 1 MSamples 1000 1 MByte GPU - 3.2 kHz <5%

5 GS/s 4 MSamples 1000 4 MByte GPU - 810 Hz <5%

5 GS/s 16 MSamples 1000 16 MByte GPU - 203 Hz <5%

5 GS/s 64 MSamples 1000 64 MByte GPU - 51 Hz <5%

5 GS/s 256 MSamples 1000 64 MByte GPU - 13 Hz <5%

5 GS/s 1 GSamples 1000 64 MByte GPU - 3 Hz <5%

These results have been achieved using a simple Quadro P2000 GPU. As seen in the table the
segment size or block size is not limiting the performance. The only limiting factor here is the
memory of the GPU.

© Spectrum GmbH, Germany 4/6

White Paper

Frequency domain averaging with GPU
In cases where the frequency domain should be averaged the GPU can also be used allowing
very large block sizes compared to an FPGA solution. A frequency domain average consists of
an FFT of the block followed by a summation of the FFT result. The processing then consists
of two steps where the FFT calculation is very demanding in terms of processing power. For
frequency domain averaging the GPU is the only solution, besides an FPGA, as the PC is
simply not suitable for FFT conversion at high speeds.

The following table shows some test results using an M4i.4451-x8 4 channel 14 bit digitizer
with a maximum sampling rate of 500 MS/s. The acquisition is effectively gap-less with each
block being converted into voltage levels, transformed into the frequency domain and then
averaged.

Samplerate Channels Resolution Blocksize Notifysize Mode Max
Triggerrate

CPU Load

500 MS/s 1 channel 14 Bit 512 kSamples 1 MByte GPU 1 kHz <5%

500 MS/s 1 channel 14 Bit 1 MSample 2 MByte GPU 500 Hz <5%

500 MS/s 1 channel 14 Bit 2 MSamples 4 MByte GPU 250 Hz <5%

500 MS/s 1 channel 14 Bit 8 MSamples 4 MByte GPU 62 Hz <5%

500 MS/s 1 channel 14 Bit 32 MSamples 4 MByte GPU 16 Hz <5%

500 MS/s 1 channel 14 Bit 128 MSamples 4 MByte GPU 4 Hz <5%

500 MS/s 1 channel 14 Bit 256 MSamples 4 MByte GPU 2 Hz <5%

500 MS/s 2 channels 14 Bit 256 kSampless 1 MByte GPU 2 kHz <5%

500 MS/s 2 channels 14 Bit 512 kSamples 2 MByte GPU 1 kHz <5%

500 MS/s 2 channels 14 Bit 1 MSample 4 MByte GPU 500 Hz <5%

400 MS/s 4 channels 14 Bit 128 kSampless 1 MByte GPU 3 kHz <5%

400 MS/s 4 channels 14 Bit 256 kSamples 2 MByte GPU 1.5 kHz <5%

400 MS/s 4 channels 14 Bit 512 MSample 4 MByte GPU 750 Hz <5%

Summary
As the above results show block averaging in PC-based software can be used to improve the
overall segment size as long as the repetition rate doesn't get to high. When using a GPU
one can even get to the limit of the bus transfer speed. Thanks to the high-speed data
transfer rates of the PCIe bus much longer acquisitions can be averaged overcoming one of
the main limitations of FPGA based averaging processes. For situations where high repetition
rates need to be managed, that extend the transfer speed, hardware block averaging will
still be the best choice.

The above test program is free to use for your own tests or as a base for implementation in
other software programs. The GPU examples are part of the SCAPP option and are available
to Spectrum customers against an NDA.

The best performance is reached when using a notifysize of 1 MByte. The number of
averages that is performed does not have any visible impact on the test results. The time
used to copy the result segment and to clear the result buffer is irrelevant compared to the

© Spectrum GmbH, Germany 5/6

White Paper

sample summation.

As the complete data handling and summation process does not differ when acquiring
multiple channels the result can simply be re-calculated for other channel combinations. The
following settings will all result in exactly the same maximum trigger rate:

• 1 channel 5 GS/s @ segmentsize

• 2 channels 2.5 GS/s @ segmentsize/2

• 4 channels 1.25 GS/s @ segmentsize/4

Reducing the sampling speed for one channel down to 2.5 GS/s allows one channel to run
with the maximum theoretical software averaging speed. For a 1 MSample segmentsize,
including the 160 samples dead time between triggers, the theoretical maximum trigger rate
is at

(2.5 GS/s) / (1 MSample + 160) = 2.38 kHz

This is far below the measured maximum of 2.9 kHz @ 5 GS/s.

© Spectrum GmbH, Germany 6/6

	Using software based fast block averaging
	Background
	What is Block Averaging?
	System Setup
	Software Implementation
	Results
	New - Using a CUDA-based GPU for averaging
	Frequency domain averaging with GPU
	Summary

